

Equation of a circle

 Write the equation of the circle which has center (3,4) and contains point (4, 7)

Equation of a circle

2) Write the equation of the circle with a diameter whose endpoints are (17, 25) and (7,1)

mAB =

mABC =

mBAC =

mACB =

If two chords in a circle are congruent, then they determine

If two chords are congruent, then their intercepted arcs are

Two congruent chords in a circle ____

The perpendicular from the center of a circle to a chord

A segment that bisects a chord

Relationship between inscribed angles and central angles

Inscribed Angle Theorem

The measure of an the measure of the same _____

POK

angle is half ___angle that arc

Relationship between inscribed angles that share the same arc.

Inscribed angles that share the same _____ arc are _____

Observations of a right inscribed angle

Angles inscribed in a semicircle are _

Quadrilaterals inscribed in a Circle... **Cyclic Quadrilateral Theorem** angles in a cyclic quadilateral are

Parallel lines intercept _____ arcs on a circle.

Angle/Chord Theorem

If two chords intersect _____ a circle, then the measure of each angle is _____ the sum of the intercepted arcs.

Angle/Secant Theorem

If secants intersect outside a circle, then the measure of the angle formed outside the circle is ______ the ______ of the intercepted

arcs

Angle/Tangents Theorem

Angle/Tangents Theorem

If tangents intersect outside a circle, then the measure of the angle formed outside the circle is _____ the difference of the intercepted arcs

Tangent/Secant Theorem

Tangent/Secant Theorem

If tangents or secants intersect outside a circle, then the measure of the angle formed outside the circle is _____ the difference of the intercepted arcs

Segments of Chord Theorem

Segments of Chords Theorem

If two chords intersect in a circle then the ______ of the lengths of the segments of one chord is equal in measure to the ______ of the segments in the other chord.

Secant Length Theorem

Secant Length Theorem

If two secant segments share the same endpoint outside a circle, then the ______ of the lengths of one secant and its external part is equal to the ______ of the other secant and its external part.

Secants/Tangent Lengths Theorem

<u>Secants/Tangents Lengths Theorem</u>

If a secant and a tangent segment share the same endpoint outside a circle, then the ______ of the lengths of the secant and its external part is equal to the ______ of the tangent segment

Equation of a circle

(h,k) is the center of the circle r is the radius